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In this paper a simple mean-field model for the liquid-glass phase transition is
proposed. This is the low density D-dimensional system of N particles inter-
acting via infinite-range oscillating potential. In the framework of the replica
approach it is shown that such a system exhibits the phase transition between
the high-temperature liquid phase and the low-temperature glass phase. This
phase transition is described in terms of the standard one-step replica symmetry
breaking scheme.
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1. INTRODUCTION

The problem of the liquid-glass phase transitions attracts permanent inter-
est during last decades (for reviews see, e.g., ref. 1). In the recent years in
additional to the traditional experimental and phenomenological investiga-
tions a notable progress has been achieved in a first principle statistical
mechanical study of the glass phase (see ref. 2 and references therein).
Leaving apart a wide scope of non-equilibrium properties of glasses, in a
pure statistical mechanical approach one is aiming to investigate the ther-
modynamical properties of the N-particle system with the two body
interparticle interactions described by the Hamiltonian

H[xi]= C
N

i, j=1
U(xi − xj), (1.1)



where xi is the vector in a D-dimensional space which points the position of
the ith particle, and U(x) is the interparticle potential (one, of course, can
consider more general systems with two or more sorts of particles and dif-
ferent potentials for different particles). In a realistic systems the potential
U(x) must be attractive (and sufficiently quickly decaying) at large
distances and strongly repulsive at short distances.

In a very simplified form the scheme of calculations is supposed to
look as follows. Instead of the plain (and hopeless) integration over all
positions of the particles in the partition function

Z=5D
N

i=1
F dDxi

6 exp(−bH[xi]) (1.2)

in the systematic approach, first of all, one should find (or rather guess) the
space structure and the energy of the (zero-temperature) ground state con-
figuration of the Hamiltonian, and then, using one or another approxima-
tion, integrate over the fluctuations around this state. Depending on the
value of the temperature one eventually finds that either the proposed
non-trivial ground state is stable with respect to the fluctuations (at low
enough temperatures), or (at sufficiently high temperatures) the fluctua-
tions destroy proposed ground state and the thermodynamic state of the
system is a liquid where all the particles are delocalized.

Indeed, the above scheme works rather well if the low temperature
ground state of the system is ordered. In this case we are dealing with the
crystal which is characterized by one or another global symmetry breaking,
and which can be sufficiently easily described analytically. However, in the
study of the disordered glass state, the situation becomes much more com-
plicated, because in this case the low-temperature solid state is character-
ized by the random positions of the particles. This state is characterized by
broken translational and rotational symmetries, but unlike of the ordered
crystal configurations (having one or another spatial and rotational sym-
metry), it is very difficult to understand what are the residual symmetries
left in the glassy state. All that resembles the problem one is facing in spin-
glasses, where the spins are getting frozen in a random state which can not
be characterized by any apparent global symmetry breaking (3) (this analogy
between spin glasses and the thermodynamics of the glass state was first
noticed by Kirkpatrick et al. (4)) The only but quite essential difference is
that, unlike spin-glasses, here we do not have quenched disorder installed in
the initial Hamiltonian. Nevertheless, the ideas borrowed from the spin-
glass theory, and in particular the use of the replica technique (5) (which, as
we know now, has much deeper meaning than just a technical trick to pass
over the averaging of the logarithm of the partition function) turned out to
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be quite fruitful also for structural glasses, as was shown in the series of
papers by Mezard and Parisi. (2) It should be noted that at present we know
many others examples of the successful applications of the replica approach
for glassy-like systems containing no quenched disorder. (6)

To demonstrate the effect of a symmetry breaking in ordered magnetic
systems one can introduce a conjugated field coupled to the order param-
eter, which at the end (after taking the thermodynamic limit) is set to zero.
In spin-glasses the same effect can be achieved by introducing several
weakly coupled copies (replicas) of the original system. In a similar way, to
demonstrate the effect of the freezing into a random glass state in the
system of particles described by the Hamiltonian, Eq. (1.1), let us introduce
two identical copies of the same system described the following Hamiltonian

H=C
N

i, j
U(xi − xj)+C

N

i, j
U(yi − yj)+E C

N

i
W(xi − yi), (1.3)

which contains a weak (controlled by the parameter E) attractive potential
W between particles x and y of the two systems. After taking the thermo-
dynamic limit the parameter E must be set to zero. This trick can result in
two types of situations:

(1) After taking the limit E Q 0 the particles of the two systems
become independent (uncorrelated). This would indicate that the particles
do not have a ‘‘memory’’ of their spatial positions so that they are free to
move (non localized in space) and the original system is in the (high-
temperature) liquid phase.

(2) After taking the limit E Q 0 the positions of the particles of the
two systems remain correlated. This would indicate that the particles
become localized in space so that the original system is in the (low-
temperature) solid state. The order parameter describing this phase can be
defined, e.g., in terms of the correlation function between particles of the
two copies of the system.

In fact, like in spin glasses, to obtain more detailed information about
this type of phase transition, instead of the two copies it is more convenient
to introduce a general n replicas of the original system (see Section 2). It
should be also noted that in real calculations the introduction of the sup-
plementary attractive potential between replicas is actually not necessary. It
is well known that, e.g., in the case of the paramagnetic-ferromagnetic
phase transition, instead of introducing a conjugated field, it is sufficient
just to suppose the possibility of the global symmetry breaking to prove its
existence afterwords. In a similar way, here we are also going to admit the
possibility of the effective space correlations among particles of different
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(originally non-coupled) replicas, while the validity of this assumption can
be checked a posteriori.

Although the above idea is very simple, actual calculations for realistic
models turn out to be quite sophisticated (see, e.g., ref. 2). For that reason
it would be quite helpful to have here the analog of the mean-field models
of spin-glasses, like the SK-model (7) or REM, (8) which despite of their non-
physical nature, turned out to be very powerful tool for understanding the
nature of the spin-glass state. The first model of this type was proposed by
T. R. Kirkpatrick and D. Thirumalai, (9) which has been formulated
in terms of somewhat unrealistic density functional Hamiltonian and
which, nevertheless, provides a consistent static and dynamic theory of the
structural glass transition.

The aim of this paper is to present a very simple mean-field toy model
of a structural glass (a distant analog of the SK model of spin-glasses),
which is described by the Hamiltonian containing infinite-range (non
decreasing with the distance) oscillating interactions between particles.
Despite its quite unrealistic structure this model exhibits non-trivial liquid-
glass phase transition and provide a kind of ‘‘toy’’ illustration of the ideas
the general approach. It will be shown that the nature of the ‘‘liquid-glass’’
phase transition in such system is of the so-called one-step replica symme-
try breaking type which, in particular, takes place in REM (8) and in many
others disordered systems, (10) and it also describes the phase transition in
the so-called discontinuous spin-glasses without any quenched disorder. (6)

This phase transition is characterized, on one hand, by a finite jump of
the order parameter (like at the first-order phase transitions), and, on the
other hand, by the continuous free energy function (as it should be at the
second-order phase transition).

2. REPLICA CALCULATIONS

The general strategy of the replica calculations for spin-glasses and
others disordered systems is well described in all details in a number publi-
cations (see, e.g., ref. 3). The adaptation of this technique for systems con-
taining no quenched disorder was proposed in ref. 5, and currently it is
widely used for structural glasses (2) as well as for others glass-like systems
containing no quenched disorder. (11) For that reason, in this section I am
going to remind just the main points of the replica approach (as it can
be used for systems with no quenched disorder), while the details the
interested reader can find in the referenced cited above.

Let us consider a system of N identical particles of the size a confined
in a macroscopic box of the size R described by a Hamiltonian H[xi]
(i=1, 2,..., N). Now, instead of the partition function (1.2) let us introduce
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the (replica) partition function for n non-coupled copies of the original
system (which now consist of Nn particles):

Zn=
1

(N!)n
5D

N

i=1
D

n

a=1
F

dDxa
i

aD
6 exp 1−b C

n

a=1
H[xa

i ]2 , (2.1)

Of course, formally Zn=Zn. However, physically, this can be correct only
if the particles of the system are treated as non-localized in space which is
correct only if the thermodynamic state of the system is a liquid. If the
system undergoes true thermodynamic phase transition into a disordered
glass-like state in which the positions of the particles are localized in space,
then the situation becomes much more complicated (in this case the iden-
tity Zn=Zn is recovered only if in the partition function one makes the
summation over all the phase space ignoring the presence of infinite
barriers of the free energy separating different glass-like disordered states).
To take into account the possibility of existence (at low temperatures)
of the true thermodynamic glass-like states, in the computation of the
above replica partition function, Eq. (2.1), one can suppose from the very
beginning that the space positions of particles belonging to some replicas
are correlated (whether this assumption is correct or not should be then
checked a posteriori). In other words, this assumption assumes that the
particles of some replicas are localized in the same space positions.

In terms of the standard replica formalism (3) the above idea can be
formulated in the following way. Let us divide all n replicas into n/m
groups each consisting of m replicas, and then let us suppose that the par-
ticles belonging to the same group are correlated (so that they create a kind
of the ‘‘replica molecule’’), while particles of different groups are non-cor-
related (this type of structure is called ‘‘one-step replica symmetry break-
ing’’). It is clear that in this case the partition function, Eq. (2.1), reduces to

Zn=[Zm]
n
m, (2.2)

and the density of the free energy of the system is then

f=−
1

bNn
ln(Zn)=−

1
bmN

ln(Zm). (2.3)

At this point one has to note what is the difference between the replica
formalism for the systems with quenched disorder (spin-glasses), and for
the present glass-like systems containing no quenched disorder. In the first
case, one is facing an additional technical problem (which is absent in the
present analysis) of averaging of the free energy (logarithm of the partition
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function) over parameters describing quenched disorder. For that reason,
the parameter n describing the ‘‘number of replicas’’ must be analytically
continued to arbitrary non-integer values and eventually set to zero at the
end of calculations. Instead of that, here we do not need to average the free
energy over quenched disorder, and the replicas were introduced only for
physical reasons discussed above. Originally the technical trick with n
identical copies of the systems has been introduced to study the localization
of particles in random space positions, but eventually we are studying only
one system, and this indicate that in the present case the parameter n must
be set to n=1 at the end.

Coming back to Eq. (2.3), one could conclude that formally the
parameter n has simply dropped out from the analysis. Actually this is not
quite so, because in Eq. (2.3) we are left with somewhat mysterious
parameter m, which by definition is constrained by the condition m [ n.
Setting n=1 one finds that the parameter m (which now has to be analyti-
cally continued for arbitrary non-integer values) is bounded by m [ 1 (for
further details and physical discussion of the replica parameter m see,
refs. 2 and 5).

According to the general strategy of the replica theory the physical
free energy of the system is given by the maximum of the replica free
energy, Eq. (2.3), with respect to the continuous parameter m (bounded by
the condition m [ 1). As usual in the replica calculations, after the param-
eter m (which originally was introduced as an integer number) is analyti-
cally continued for values smaller than one, the original physical minimum
of the free energy turns into a maximum. In the present case the number of
independent replica variables is equal to (m − 1) (see below), therefore
for m smaller than one this number formally becomes negative which
effectively changes the minimum of the free energy into the maximum
(this situation is quite similar to that of the standard replica calculations
in disordered systems (3)).

The assumption that the positions xa
i of particles in different replicas

are correlated can be explicitly represented as follows:

xa
i =xi+ua

i , (2.4)

where xi play the role of the center of mass of the replica ‘‘molecule,’’ and
ua

i are the deviations of the particles from the center of mass. Of course,
these deviations are bounded by the condition

C
m

a=1
ua

i =0 (2.5)
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and their values have to be small compared to the typical distances |xi − xj |
between the replica molecules. In this way the replica partition function
takes the following form:

Zm=
a−NmD

N!
5D

N

i=1
F dDxi

65D
N

i=1
D

m

a=1
F dDua

i
65D

N

i=1
mDd 1 C

m

a=1
ua

i
26

× exp 1−b C
m

a=1
H[xi+ua

i ]2 . (2.6)

We see that now the problem becomes similar to that of statistical systems
with quenched disorder in replica representation: according to Eq. (2.6),
xi’s play the role of disorder parameters, while ua

i are the dynamical
variables. As usual, after averaging over the disorder parameters {xi} we
will get the partition function Zm represented in terms of a new replica
Hamiltonian Hm[ua

i ]:

Zm=5D
N

i=1
D

m

a=1
F dDua

i
6 exp(−bHm[ua

i ]), (2.7)

where the replica variables ua
i could now become effectively coupled.

The standard scenario of the one-step replica symmetry breaking
phase transition, observed in various disordered systems, (8, 10) looks as
follows. The extremum of the free energy, Eq. (2.3), is defined by the
saddle-point equation

“f(m, b)/“m=0. (2.8)

If the solution of this equation, mg(b), is smaller than one, then for
the physical free energy one finds: f(b)=f(mg(b), b). This situation cor-
responds to the solid glassy phase, and it will be shown to take place only
at temperatures smaller than a certain critical temperature Tc.

On the other hand, it turns out that in the high-temperature liquid
phase, at T \ Tc, the formal solution of Eq. (2.8) yields mg(b) \ 1, which is
not allowed by the constraint m [ 1. In this case it can be proved that the
maximum of the free energy f(m, b) is achieved at m=1, so that the phy-
sical free energy of the system is given by f(b)=f(m=1, b).

Now let us look how this general scheme works for the concrete mean-
field (toy) model of a structural glass which will be introduced in the next
section.
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3. THE MODEL

The model we consider in this paper consists of N identical particles of
the size a confined in a (macroscopic) box of the size R with the density
r — N/RD, which in the thermodynamic limit (N Q ., R Q .) remains
finite. This system is described by the Hamiltonian:

H=−
1

`N
C
N

i < j
U(|xi − xj |) (3.1)

where

U(|x|)=−`2 cos(|x|) (3.2)

is the infinite-range oscillatory interparticle interaction potential. The
motivation for this form of the interaction potential is in the following. On
one hand, to have true mean-field statistical model one would like to have
the interactions between particles to be infinite-range. On the other hand,
the structure of the interactions in the model of a glass-like system (con-
taining no quenched disorder) must be such that it would be (in the
language of spin-glasses) as frustrated as possible. Forgetting unphysical
nature of the interactions (3.2), they satisfy these two demands almost
ideally. The interaction potential, Eq. (3.2), yields the alternating concen-
tric space bands of positive and negative energy. For a system of N par-
ticles in dimensions greater than D=1 it creates highly complicates ‘‘inter-
ference’’ pattern, so that any (random or regular) configuration of such
particles appears to be strongly ‘‘frustrated,’’ in a sense that no positions of
the particles could satisfy all the interactions. As often is done in the
studies of glasses, here we are going to ignore the possibility of existence of
the exceptional ordered crystal-like ground state configurations (if they do
exist, their energy would be of the same order of magnitude as the disor-
dered ones) In other words, we are going to study generic low temperature
solid state in this model which is characterized by a random positions of
the particles, and according to Eq. (3.1), their energy is extensive in N.

It turns out that all the calculations simplify a lot if one makes the
following assumptions. It will be supposed that that the size of the particles
a is much smaller than the oscillation period of the potential, Eq. (3.2),
(which is of the order of one), and in turn, this oscillation period is much
smaller than the typical distance between particles L=r−1/D:

a ° 1 ° L (3.3)
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(in particular, this makes possible to treat the particles as point-like
objects).

After splitting of the degrees of freedom {xa
i } into the center of mass

{xi} and the deviations {ua
i } (Eqs. (2.4)–(2.5)), for the replica partition

function, (2.6), we get:

Zm=
aND(m − 1)

N!
D
N

i=1

51 D
m

a=1
F dDua

i
2 mDd 1 C

m

a=1
ua

i
265D

N

i=1
F

dDxi

aD
6

× exp 1 b

`N
C
m

a=1
C
N

i < j
U(|xi − xj+ua

ij |)2 (3.4)

where ua
ij — ua

i − ua
j . Keeping only extensive in N terms (the only relevant

ones in the thermodynamic limit N Q .) for the averaging over {xi} we
obtain:

1
N!

5D
N

i=1
F

|xi | < R

dDxi

aD
6 exp 1 b

`N
C
m

a=1
C
N

i < j
U(|xi − xj+ua

ij |)2

4 (const) 1L
a
2ND

exp 1 b

`N
C
m

a=1
C
N

i < j
U(|xi − xj+ua

ij |)

+
b2

2N
C
m

a, b=1
C
N

i < j
C
N

k < l
U(|xi − xj+ua

ij |) U(|xk − xl+ub
kl |)2 (3.5)

where L=r− 1
D, r=N/RD, N! 4 (N/e)N and

( · · · ) — 1L
a
2−ND 5D

N

i=1
F dDxi

6 ( · · · ). (3.6)

One can easily check that due to the infinite-range structure of the interac-
tions (which are of order N−1/2) in the Hamiltonian (3.1), the higher order
terms of the expansion in Eq. (3.5) are not extensive in N (which is pro-
portional to the volume of the system). For example, taking into account
Eqs. (3.7) and (3.8) below, one can easily find that the only non-zero con-
tribution of the 4-th order has the following form:

N−2 C
N

i < j
C

a, b, c, d
U(|xi − xj+ua

ij |) U(|xi − xj+ub
ij |)

× U(|xi − xj+uc
ij |) U(|xi − xj+ud

ij |)

which is of order O(1).
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According to the above definition, Eq. (3.6), one can easily prove
(under condition L ± 1):

U(|x|)=0 (3.7)

U(|xi |) U(|xj |) 4 dij (3.8)

and

U(|xi |) U(|xj+u|) 4 J0(|u|) dij (3.9)

where J0(u) is the Bessel function. In particular, for u ° 1 we have:

J0(u ° 1) 4 1 − 1
4 u2. (3.10)

Thus, substituting Eq. (3.5) into Eq. (3.4) and supposing that the
deviations |ua

i | from the center of mass positions are small, using
Eqs.(3.7)–(3.10) for the partition function, Eq. (3.4) we obtain:

Zm 4 (const) 1L
a
2ND

a−ND(m − 1)mND D
N

i=1

51 D
m

a=1
F dDua

i
2 d 1 C

m

a=1
ua

i
26

× exp 1 b2

2N
C
m

a, b=1
C
N

i < j

51 −
1
4

(ua
i − ub

i +ub
j − ua

j )262 (3.11)

or

Zm 4 5a−mLm exp 3(bm)2

4D
41 D

m

a=1
F dDua2 d 1 C

m

a=1
ua2

× exp 3 −
1
2

b2m C
m

a=1
(ua)246ND

. (3.12)

One can easily see, that the assumption that the typical value of the devia-
tions |u| are small is valid only for (bm) ± 1. In this case simple integration
yields:

Zm 4 (const) 5a−mLm exp 3(bm)2

4D
41 2p

b2m
2

m − 1
2

m−1
26ND

. (3.13)

On the other hand the region of integration |u| ± 1 corresponds to the
situation of free non-correlated particles (when no ‘‘replica molecules’’
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exists), and in this case, the leading order contribution to the partition
function is given by

Zm 4 5 1
N!

1RD

aD
2N

exp 31
4

b2N46m

4 5La−1 exp 3 b2

4D
46NDm

. (3.14)

Thus, in the thermodynamic limit (N Q .) the free energy density,
Eq. (2.3), is dominated by the contribution (3.13) for bm ± 1, and it is
dominated by the contribution (3.14) for bm ° 1:

f(b, m)=˛
D
b ln a − 1

4 bm − D
bm ln L − D 1

2bm ln m
+D m − 1

2bm ln b+D m − 1
2bm ln(bm); for bm ± 1

D
b ln a − 1

4 b − D
b ln L; for bm ° 1.

(3.15)

One can easily prove that this function of the parameter m has a
unique maximum at m=mg(b), which at L ± 1 can be obtained explicitly:

mg(b) 4
1
b

`4D ln L+O(ln ln L). (3.16)

Since the function f(b, m) is defined only at the interval 0 [ m [ 1, in the
case mg(b) > 1 the maximum of f is achieved at m=1. Thus, the
maximum of the function f(b, m) (0 [ m [ 1) takes place at

mg(b)=3
bc

b ; for b > bc

1; for b [ bc

(3.17)

where

bc 4 `4D ln L +O(ln ln L). (3.18)

Correspondingly, for the physical free energy of the system, f(b)=
f(b, mg), (with the accuracy O(ln ln L

`ln L
) we obtain the following result:

f(b) 4 3f0(b) − 1
2 bc; for b > bc

f0(b) − 1
4 b − b

2
c

4b ; for b [ bc

(3.19)

where

f0(b)=
D
b

ln a. (3.20)
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It should be noted that, as usual for the systems with continuous symmetry
(in the model under consideration the coordinates of the particles are
described by the continuous parameters), the absolute value of the free
energy (as well as the absolute value of the entropy) depends on the choice
of the measure of integration. In our case this measure is defined by the
size of the particles a, (which is just an arbitrary parameter) and which
provides the trivial contribution f0(b) to the free energy. The physically
interesting peace of the free energy is the difference between its absolute
value and this trivial contribution. In terms of this difference, f̃(b) —

f(b) − f0(b), the above result demonstrate the typical scenario of the so-
called one-step replica symmetry breaking phase transition observed in the
Random Energy Model of spin glasses (8) as well as in many others disor-
dered systems: (10) (1) both the free energy and the entropy are continuous at
the phase transition point; (2) f̃(b) at b \ bc becomes a constant, and the
corresponding entropy S̃(b) becomes zero. The last point tells that (like in
REM) below Tc the system ‘‘localizes’’ exactly in one of the disordered
states in the cofigurational space.

It should be noted that the result (3.19) represents only the leading
contribution in terms of the big parameter ln L. Of course, the next order
terms describing in particular the thermal fluctuations of the particles near
their random space positions, would make the the situation slightly more
complicated, and in particular entropy of the glassy phase will become
non-zero.

To complete the qualitative study of the above phase transition one
has to introduce the proper order parameter. The order parameter which
describes the correlations of the particles inside the replica ‘‘molecules’’ in
the glassy phase can be defined in the standard way:

Q=O(ua − ub)2P (3.21)

where a ] b. Since all the replicas are equivalent we can also define Q as
follows:

Q=
1

m(m − 1)
C
m

a, b
O(ua − ub)2P. (3.22)

Using the constraint, Eq. (2.5), we get:

Q=
2Dm

(m − 1)
O(ua

a)2P (3.23)

where the replica number a and the space vector component a are arbi-
trary. Note that the above definition of the order parameter is valid only
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for the glassy phase at m < 1. In the liquid phase (m — 1) the positions of
the particles are not correlated by definition.

Proceeding similarly to the calculation of the replica partition func-
tion, one finds:

O(ua
a)2P=

[<m
a=1 > dDua](ua

a)2 d(;m
a=1 ua) exp(−1

2 b2m ; m
a=1 (ua)2)

[<m
a=1 > dDua] d(; m

a=1 ua) exp(−1
2 b2m ; m

a=1 (ua)2)
. (3.24)

Straightforward calculations yield:

O(ua
a)2P=

m − 1
(bm)2 . (3.25)

Correspondingly for the order parameter, Eq. (3.23), we get:

Q=
2D

b(bm)
. (3.26)

Substituting here the saddle-point value of m=mg(b) obtained above,
Eq. (3.16), we eventually find:

Q 4
2D

b `4D ln L
=

2D
bbc

. (3.27)

We see that in the whole low-temperature region at b > bc 4 `4D ln L
± 1 the value of the order parameter Q (as well as the value of the typical
deviation O(ua

a)2P) remains small, which justify the approximation made in
calculation of the replica partition function, Eq. (3.12), as well as the whole
original idea of splitting the degrees of freedom into the centers of masses
of the replica ‘‘molecules’’ and the small deviations ua, Eqs. (2.4)–(2.5).

4. DISCUSSION

Physically the order parameter Q describes the typical value of the
space fluctuations of the localized particles around their random equilib-
rium positions. It is interesting to note that the value of this order param-
eter remains finite in the whole low-temperature (glassy) phase including
the phase transition point. In particular, according to Eq. (3.27) at b=bc

we have:

Qc 4
1

2 ln L
(4.1)
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and Q(T Q 0) Q 0. Note also that in the high-temperature phase this order
parameter is not defined: in terms of replicas it can be defined only for
m ] 1 while at b < bc, mg(b) — 1, and in physical terms it describes the
fluctuation of the localized particles which are just absent at b < bc.

Thus, here we face the typical scenario of the phase transition with one-
step replica symmetry breaking well known after the random energy model
of spin glasses. (8) On one hand, in terms of the free energy this is the phase
transition of the second order (the free energy function is continuous at Tc

and it has a singularity only in the second derivative over the temperature,
see Eq. (3.19)), while on the other hand, the order parameter which
characterizes the low-temperature phase has a finite value right at Tc

(which corresponds to the first-order phase transitions).
Of course, from the physical point of view, due to long-range structure

of the interactions between particles, the present model could be considered
as not more than a ‘‘toy’’ model of the structural glass. On the other hand,
the big advantage of this extremely simple model is that the mean-field
approach for it is exact, and it provides the non-trivial solution which
makes possible to test on the qualitative level the general ideas of the
replica approach for the structural glasses. Besides, the model exhibits
rather peculiar type of the liquid-glass phase transition, which seems to be
interesting in itself.
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